Updated Are old secrets behind Lockheeds new fusion machine

first_img Email The defense firm Lockheed Martin sent tech geeks into a frenzy yesterday when it revealed a few scant details of a “compact fusion reactor” (CFR) that a small team has been working on at the company’s secretive Skunk Works in Palmdale, California. The company says that its innovative method for confining the superhot ionized gas, or plasma, necessary for fusion means that it can make a working reactor 1/10 the size of current efforts, such as the international ITER fusion project under construction in France.Being able to build such a small and presumably cheap reactor would be world-changing—ITER will cost at least $20 billion to build and will only prove the principle, not generate any electricity. But with little real information, no one is prepared to say that Lockheed’s approach is going to spark a revolution. “You can’t conclude anything from this,” says Steven Cowley, director of the Culham Centre for Fusion Energy in Abingdon, U.K. “If it wasn’t Lockheed Martin, you’d say it was probably a bunch of crazies.”The Lockheed team predicts that it will take 5 years to prove the concept for the new reactor. After that, they estimate it would take another 5 years to build a prototype that would produce 100 megawatts (MW) of electricity—enough for a small city—and fit on the back of a truck. A Web page with video on the Lockheed site even talks of powering ships and aircraft with a CFR. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwecenter_img Lockheed statements reveal little about the nature of the reactor. Aviation Week yesterday carried the most detailed account having interviewed the team leader, Thomas McGuire.Fusion seeks to release energy from inside atomic nuclei by getting light nuclei, usually isotopes of hydrogen, to fuse together to form helium. The problem is that nuclei are all positively charged and so repel each other. To get them close enough to fuse it is necessary to heat a plasma—a gas of nuclei and electrons—to more than 100 million degrees Celsius so that the nuclei travel at high enough speeds to fuse when they collide with each other. The challenge in building a fusion reactor is to confine the plasma such that it does not touch the sides of its container, because its temperature would melt any metal. Most reactors, such as tokamaks like ITER, use powerful magnetic fields for confinement.From Lockheed photographs of the CFR, it shows similarities to a magnetic configuration known as a cusp geometry, perhaps one known as a “picket fence.” The images show a series of ring-shaped electromagnets arranged in a row, like curtain rings on a rail. If it is a picket fence, then plasma would be confined along the axis running down the middle of the rings and the electromagnets produce a series of magnetic fields that bulge out toward the central plasma—a series of cusps. The effect of this is that if a charged particle near the axis moves outwards it starts to experience a magnetic field pushing it back. This is gentle at first but the farther the particle strays from the axis, the more strongly it is pushed back toward the center. This makes the confined plasma less prone to instabilities that plague other types of fusion containment.Cusp geometries were first proposed in the 1950s by Harold Grad of New York University but were abandoned because experiments showed such machines would be leaky: Particles could escape through the gaps between one electromagnet and the next. Some cusp ideas have been revived in more recent devices such as the Polywell, which creates a 3D rather than linear cusp geometry. According to Aviation Week, the CFR would use superconductors in its electromagnets—not available to researchers in the 1950s—which would provide stronger magnetic fields and so improve confinement. Lockheed statements refer to combining the best parts of several confinement approaches. Cowley thinks they may also be using a technique called a field-reversed configuration (FRC), in which helical magnetic fields are induced in the plasma so that it confines itself. FRCs again date back to the late 1950s and 1960s but tend to be very short-lived, lasting on the order of a millisecond. “They’re probably trying to create an FRC inside a picket fence,” Cowley speculates.*Update, 17 October, 10:53 a.m.: Three U.S. patent applications filed on 9 October by McGuire reveal more details about the reactor. It does appear to be some sort of cusp geometry device but more complicated than a picket fence. It also appears to have a structure known as a magnetic mirror at either end. This acts as a magnetic plug to stop particles from escaping along the axis of the device.One potential problem with the device that has been pointed out by scientists who have spoken with ScienceInsider is that it appears to have electromagnet coils made from superconductor inside the reaction vessel. If they were in that position in a working fusion reactor, the superconductor would be destroyed by the high-energy neutrons that are a product of fusion reactions. Other designs that use high-temperature superconductors have more than a meter of shielding to protect magnets from neutrons, although researchers at the Massachusetts Institute of Technology believe this could be reduced to as low as 77 centimeters. Even if it was possible to reduce this to 70 cm and such shielding was added to Lockheed’s current design, researchers say it would make the device 18 meters across, not the 7 meters that the company is claiming. Click to view the privacy policy. Required fields are indicated by an asterisk (*)last_img

Leave a Reply